Metamath Proof Explorer


Theorem cvbr2

Description: Binary relation expressing B covers A . Definition of covers in Kalmbach p. 15. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvbr2 ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 cvbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) )
2 iman ( ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ( ( 𝐴𝑥𝑥𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) )
3 anass ( ( ( 𝐴𝑥𝑥𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) ↔ ( 𝐴𝑥 ∧ ( 𝑥𝐵 ∧ ¬ 𝑥 = 𝐵 ) ) )
4 dfpss2 ( 𝑥𝐵 ↔ ( 𝑥𝐵 ∧ ¬ 𝑥 = 𝐵 ) )
5 4 anbi2i ( ( 𝐴𝑥𝑥𝐵 ) ↔ ( 𝐴𝑥 ∧ ( 𝑥𝐵 ∧ ¬ 𝑥 = 𝐵 ) ) )
6 3 5 bitr4i ( ( ( 𝐴𝑥𝑥𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) ↔ ( 𝐴𝑥𝑥𝐵 ) )
7 2 6 xchbinx ( ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ( 𝐴𝑥𝑥𝐵 ) )
8 7 ralbii ( ∀ 𝑥C ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ↔ ∀ 𝑥C ¬ ( 𝐴𝑥𝑥𝐵 ) )
9 ralnex ( ∀ 𝑥C ¬ ( 𝐴𝑥𝑥𝐵 ) ↔ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) )
10 8 9 bitri ( ∀ 𝑥C ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) )
11 10 anbi2i ( ( 𝐴𝐵 ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ) ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) )
12 1 11 bitr4di ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥𝐵 ) → 𝑥 = 𝐵 ) ) ) )