| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpsscon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 2 |
|
chpsscon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐴 ⊊ 𝑥 ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 3 |
2
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( 𝐴 ⊊ 𝑥 ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 |
|
chpsscon3 |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 5 |
4
|
ancoms |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 6 |
5
|
adantll |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 7 |
3 6
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 8 |
|
choccl |
⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) |
| 9 |
|
psseq2 |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 10 |
|
psseq1 |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 12 |
11
|
rspcev |
⊢ ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 |
8 12
|
sylan |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 14 |
13
|
ex |
⊢ ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 15 |
14
|
ancomsd |
⊢ ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 17 |
7 16
|
sylbid |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 18 |
17
|
rexlimdva |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 19 |
|
chpsscon1 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) |
| 20 |
19
|
adantll |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) |
| 21 |
|
chpsscon2 |
⊢ ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 22 |
21
|
ancoms |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 23 |
22
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 24 |
20 23
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 25 |
|
choccl |
⊢ ( 𝑦 ∈ Cℋ → ( ⊥ ‘ 𝑦 ) ∈ Cℋ ) |
| 26 |
|
psseq2 |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 27 |
|
psseq1 |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) |
| 28 |
26 27
|
anbi12d |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) ) |
| 29 |
28
|
rspcev |
⊢ ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ ∧ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 30 |
25 29
|
sylan |
⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝑦 ∈ Cℋ → ( ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 32 |
31
|
ancomsd |
⊢ ( 𝑦 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 34 |
24 33
|
sylbid |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 35 |
34
|
rexlimdva |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 36 |
18 35
|
impbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 37 |
36
|
notbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 38 |
1 37
|
anbi12d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 39 |
|
cvbr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |
| 40 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 41 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 42 |
|
cvbr |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 43 |
40 41 42
|
syl2anr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 44 |
38 39 43
|
3bitr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) ) |