Metamath Proof Explorer


Theorem chpsscon3

Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chpsscon3 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 chsscon3 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
2 chsscon3 ( ( 𝐵C𝐴C ) → ( 𝐵𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
3 2 ancoms ( ( 𝐴C𝐵C ) → ( 𝐵𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
4 3 notbid ( ( 𝐴C𝐵C ) → ( ¬ 𝐵𝐴 ↔ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
5 1 4 anbi12d ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) )
6 dfpss3 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )
7 dfpss3 ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
8 5 6 7 3bitr4g ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) )