Metamath Proof Explorer


Theorem chpsscon2

Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chpsscon2 ( ( 𝐴C𝐵C ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
2 chpsscon3 ( ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) )
3 1 2 sylan2 ( ( 𝐴C𝐵C ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) )
4 ococ ( 𝐵C → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 )
5 4 adantl ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 )
6 5 psseq1d ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) )
7 3 6 bitrd ( ( 𝐴C𝐵C ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) )