| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 2 |
|
chpsscon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 |
|
ococ |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 6 |
5
|
psseq1d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 7 |
3 6
|
bitrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |