Metamath Proof Explorer


Theorem cvpss

Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvpss ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 cvbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) ) )
2 simpl ( ( 𝐴𝐵 ∧ ¬ ∃ 𝑥C ( 𝐴𝑥𝑥𝐵 ) ) → 𝐴𝐵 )
3 1 2 syl6bi ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵𝐴𝐵 ) )