Metamath Proof Explorer


Definition df-cv

Description: Define the covers relation (on the Hilbert lattice). Definition 3.2.18 of PtakPulmannova p. 68, whose notation we use. Ptak/Pulmannova's notation A is read " B covers A " or " A is covered by B " , and it means that B is larger than A and there is nothing in between. See cvbr and cvbr2 for membership relations. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion df-cv
|- . | ( ( x e. CH /\ y e. CH ) /\ ( x C. y /\ -. E. z e. CH ( x C. z /\ z C. y ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccv
 |-  
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 cch
 |-  CH
5 3 4 wcel
 |-  x e. CH
6 2 cv
 |-  y
7 6 4 wcel
 |-  y e. CH
8 5 7 wa
 |-  ( x e. CH /\ y e. CH )
9 3 6 wpss
 |-  x C. y
10 vz
 |-  z
11 10 cv
 |-  z
12 3 11 wpss
 |-  x C. z
13 11 6 wpss
 |-  z C. y
14 12 13 wa
 |-  ( x C. z /\ z C. y )
15 14 10 4 wrex
 |-  E. z e. CH ( x C. z /\ z C. y )
16 15 wn
 |-  -. E. z e. CH ( x C. z /\ z C. y )
17 9 16 wa
 |-  ( x C. y /\ -. E. z e. CH ( x C. z /\ z C. y ) )
18 8 17 wa
 |-  ( ( x e. CH /\ y e. CH ) /\ ( x C. y /\ -. E. z e. CH ( x C. z /\ z C. y ) ) )
19 18 1 2 copab
 |-  { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ ( x C. y /\ -. E. z e. CH ( x C. z /\ z C. y ) ) ) }
20 0 19 wceq
 |-  . | ( ( x e. CH /\ y e. CH ) /\ ( x C. y /\ -. E. z e. CH ( x C. z /\ z C. y ) ) ) }