| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmd |
|- MH |
| 1 |
|
vx |
|- x |
| 2 |
|
vy |
|- y |
| 3 |
1
|
cv |
|- x |
| 4 |
|
cch |
|- CH |
| 5 |
3 4
|
wcel |
|- x e. CH |
| 6 |
2
|
cv |
|- y |
| 7 |
6 4
|
wcel |
|- y e. CH |
| 8 |
5 7
|
wa |
|- ( x e. CH /\ y e. CH ) |
| 9 |
|
vz |
|- z |
| 10 |
9
|
cv |
|- z |
| 11 |
10 6
|
wss |
|- z C_ y |
| 12 |
|
chj |
|- vH |
| 13 |
10 3 12
|
co |
|- ( z vH x ) |
| 14 |
13 6
|
cin |
|- ( ( z vH x ) i^i y ) |
| 15 |
3 6
|
cin |
|- ( x i^i y ) |
| 16 |
10 15 12
|
co |
|- ( z vH ( x i^i y ) ) |
| 17 |
14 16
|
wceq |
|- ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) |
| 18 |
11 17
|
wi |
|- ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) |
| 19 |
18 9 4
|
wral |
|- A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) |
| 20 |
8 19
|
wa |
|- ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) ) |
| 21 |
20 1 2
|
copab |
|- { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) ) } |
| 22 |
0 21
|
wceq |
|- MH = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) ) } |