| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmd |
⊢ 𝑀ℋ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
1
|
cv |
⊢ 𝑥 |
| 4 |
|
cch |
⊢ Cℋ |
| 5 |
3 4
|
wcel |
⊢ 𝑥 ∈ Cℋ |
| 6 |
2
|
cv |
⊢ 𝑦 |
| 7 |
6 4
|
wcel |
⊢ 𝑦 ∈ Cℋ |
| 8 |
5 7
|
wa |
⊢ ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) |
| 9 |
|
vz |
⊢ 𝑧 |
| 10 |
9
|
cv |
⊢ 𝑧 |
| 11 |
10 6
|
wss |
⊢ 𝑧 ⊆ 𝑦 |
| 12 |
|
chj |
⊢ ∨ℋ |
| 13 |
10 3 12
|
co |
⊢ ( 𝑧 ∨ℋ 𝑥 ) |
| 14 |
13 6
|
cin |
⊢ ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) |
| 15 |
3 6
|
cin |
⊢ ( 𝑥 ∩ 𝑦 ) |
| 16 |
10 15 12
|
co |
⊢ ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) |
| 17 |
14 16
|
wceq |
⊢ ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) |
| 18 |
11 17
|
wi |
⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) ) |
| 19 |
18 9 4
|
wral |
⊢ ∀ 𝑧 ∈ Cℋ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) ) |
| 20 |
8 19
|
wa |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 21 |
20 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) ) ) } |
| 22 |
0 21
|
wceq |
⊢ 𝑀ℋ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∨ℋ 𝑥 ) ∩ 𝑦 ) = ( 𝑧 ∨ℋ ( 𝑥 ∩ 𝑦 ) ) ) ) } |