Step |
Hyp |
Ref |
Expression |
1 |
|
cvnbtwn |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
2 |
|
iman |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → 𝐴 = 𝐶 ) ↔ ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) ) |
3 |
|
eqcom |
⊢ ( 𝐶 = 𝐴 ↔ 𝐴 = 𝐶 ) |
4 |
3
|
imbi2i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → 𝐶 = 𝐴 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → 𝐴 = 𝐶 ) ) |
5 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ 𝐶 ⊊ 𝐵 ) ) |
7 |
|
an32 |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) ) |
9 |
8
|
notbii |
⊢ ( ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) ) |
10 |
2 4 9
|
3bitr4ri |
⊢ ( ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → 𝐶 = 𝐴 ) ) |
11 |
1 10
|
syl6ib |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → 𝐶 = 𝐴 ) ) ) |