Metamath Proof Explorer


Theorem cvnbtwn3

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn3 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ( ( 𝐴𝐶𝐶𝐵 ) → 𝐶 = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cvnbtwn ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ¬ ( 𝐴𝐶𝐶𝐵 ) ) )
2 iman ( ( ( 𝐴𝐶𝐶𝐵 ) → 𝐴 = 𝐶 ) ↔ ¬ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) )
3 eqcom ( 𝐶 = 𝐴𝐴 = 𝐶 )
4 3 imbi2i ( ( ( 𝐴𝐶𝐶𝐵 ) → 𝐶 = 𝐴 ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) → 𝐴 = 𝐶 ) )
5 dfpss2 ( 𝐴𝐶 ↔ ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) )
6 5 anbi1i ( ( 𝐴𝐶𝐶𝐵 ) ↔ ( ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ 𝐶𝐵 ) )
7 an32 ( ( ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ 𝐶𝐵 ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) )
8 6 7 bitri ( ( 𝐴𝐶𝐶𝐵 ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) )
9 8 notbii ( ¬ ( 𝐴𝐶𝐶𝐵 ) ↔ ¬ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ 𝐴 = 𝐶 ) )
10 2 4 9 3bitr4ri ( ¬ ( 𝐴𝐶𝐶𝐵 ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) → 𝐶 = 𝐴 ) )
11 1 10 syl6ib ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ( ( 𝐴𝐶𝐶𝐵 ) → 𝐶 = 𝐴 ) ) )