Step |
Hyp |
Ref |
Expression |
1 |
|
cvnbtwn |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
2 |
|
iman |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
3 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
4 |
|
ioran |
⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ) |
5 |
|
eqcom |
⊢ ( 𝐶 = 𝐴 ↔ 𝐴 = 𝐶 ) |
6 |
5
|
notbii |
⊢ ( ¬ 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶 ) |
7 |
6
|
anbi1i |
⊢ ( ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
8 |
4 7
|
bitri |
⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
9 |
8
|
anbi2i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
10 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ) |
11 |
|
dfpss2 |
⊢ ( 𝐶 ⊊ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) |
12 |
10 11
|
anbi12i |
⊢ ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
13 |
3 9 12
|
3bitr4i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
14 |
13
|
notbii |
⊢ ( ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
15 |
2 14
|
bitr2i |
⊢ ( ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
16 |
1 15
|
syl6ib |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) ) |