Metamath Proof Explorer


Theorem atexch

Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in MegPav2000 p. 2345 (PDF p. 8) (use atnemeq0 to obtain atom inequality). (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atexch
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> C C_ ( A vH B ) ) )

Proof

Step Hyp Ref Expression
1 atelch
 |-  ( C e. HAtoms -> C e. CH )
2 chub2
 |-  ( ( C e. CH /\ A e. CH ) -> C C_ ( A vH C ) )
3 2 ancoms
 |-  ( ( A e. CH /\ C e. CH ) -> C C_ ( A vH C ) )
4 1 3 sylan2
 |-  ( ( A e. CH /\ C e. HAtoms ) -> C C_ ( A vH C ) )
5 4 3adant2
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> C C_ ( A vH C ) )
6 5 adantr
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH C ) )
7 cvp
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A 
8 atelch
 |-  ( B e. HAtoms -> B e. CH )
9 chjcl
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )
10 8 9 sylan2
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A vH B ) e. CH )
11 cvpss
 |-  ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A  A C. ( A vH B ) ) )
12 10 11 syldan
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  A C. ( A vH B ) ) )
13 7 12 sylbid
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) )
14 13 3adant3
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) )
15 14 adantld
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH B ) ) )
16 id
 |-  ( A e. CH -> A e. CH )
17 chub1
 |-  ( ( A e. CH /\ C e. CH ) -> A C_ ( A vH C ) )
18 17 3adant2
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A C_ ( A vH C ) )
19 18 a1d
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> A C_ ( A vH C ) ) )
20 19 ancrd
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) ) )
21 chjcl
 |-  ( ( A e. CH /\ C e. CH ) -> ( A vH C ) e. CH )
22 21 3adant2
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH C ) e. CH )
23 chlub
 |-  ( ( A e. CH /\ B e. CH /\ ( A vH C ) e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) )
24 22 23 syld3an3
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) )
25 20 24 sylibd
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) )
26 16 8 1 25 syl3an
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) )
27 26 adantrd
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A vH B ) C_ ( A vH C ) ) )
28 15 27 jcad
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) )
29 28 imp
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) )
30 simp1
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A e. CH )
31 9 3adant3
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH B ) e. CH )
32 30 22 31 3jca
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) )
33 16 8 1 32 syl3an
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) )
34 14 26 anim12d
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( ( A i^i B ) = 0H /\ B C_ ( A vH C ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) )
35 34 ancomsd
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) )
36 psssstr
 |-  ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> A C. ( A vH C ) )
37 35 36 syl6
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH C ) ) )
38 chcv2
 |-  ( ( A e. CH /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A 
39 38 3adant2
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A 
40 37 39 sylibd
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A 
41 cvnbtwn2
 |-  ( ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) -> ( A  ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) )
42 33 40 41 sylsyld
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) )
43 42 imp
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) )
44 29 43 mpd
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A vH B ) = ( A vH C ) )
45 6 44 sseqtrrd
 |-  ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH B ) )
46 45 ex
 |-  ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> C C_ ( A vH B ) ) )