Metamath Proof Explorer


Theorem atexch

Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in MegPav2000 p. 2345 (PDF p. 8) (use atnemeq0 to obtain atom inequality). (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atexch A C B HAtoms C HAtoms B A C A B = 0 C A B

Proof

Step Hyp Ref Expression
1 atelch C HAtoms C C
2 chub2 C C A C C A C
3 2 ancoms A C C C C A C
4 1 3 sylan2 A C C HAtoms C A C
5 4 3adant2 A C B HAtoms C HAtoms C A C
6 5 adantr A C B HAtoms C HAtoms B A C A B = 0 C A C
7 cvp A C B HAtoms A B = 0 A A B
8 atelch B HAtoms B C
9 chjcl A C B C A B C
10 8 9 sylan2 A C B HAtoms A B C
11 cvpss A C A B C A A B A A B
12 10 11 syldan A C B HAtoms A A B A A B
13 7 12 sylbid A C B HAtoms A B = 0 A A B
14 13 3adant3 A C B HAtoms C HAtoms A B = 0 A A B
15 14 adantld A C B HAtoms C HAtoms B A C A B = 0 A A B
16 id A C A C
17 chub1 A C C C A A C
18 17 3adant2 A C B C C C A A C
19 18 a1d A C B C C C B A C A A C
20 19 ancrd A C B C C C B A C A A C B A C
21 chjcl A C C C A C C
22 21 3adant2 A C B C C C A C C
23 chlub A C B C A C C A A C B A C A B A C
24 22 23 syld3an3 A C B C C C A A C B A C A B A C
25 20 24 sylibd A C B C C C B A C A B A C
26 16 8 1 25 syl3an A C B HAtoms C HAtoms B A C A B A C
27 26 adantrd A C B HAtoms C HAtoms B A C A B = 0 A B A C
28 15 27 jcad A C B HAtoms C HAtoms B A C A B = 0 A A B A B A C
29 28 imp A C B HAtoms C HAtoms B A C A B = 0 A A B A B A C
30 simp1 A C B C C C A C
31 9 3adant3 A C B C C C A B C
32 30 22 31 3jca A C B C C C A C A C C A B C
33 16 8 1 32 syl3an A C B HAtoms C HAtoms A C A C C A B C
34 14 26 anim12d A C B HAtoms C HAtoms A B = 0 B A C A A B A B A C
35 34 ancomsd A C B HAtoms C HAtoms B A C A B = 0 A A B A B A C
36 psssstr A A B A B A C A A C
37 35 36 syl6 A C B HAtoms C HAtoms B A C A B = 0 A A C
38 chcv2 A C C HAtoms A A C A A C
39 38 3adant2 A C B HAtoms C HAtoms A A C A A C
40 37 39 sylibd A C B HAtoms C HAtoms B A C A B = 0 A A C
41 cvnbtwn2 A C A C C A B C A A C A A B A B A C A B = A C
42 33 40 41 sylsyld A C B HAtoms C HAtoms B A C A B = 0 A A B A B A C A B = A C
43 42 imp A C B HAtoms C HAtoms B A C A B = 0 A A B A B A C A B = A C
44 29 43 mpd A C B HAtoms C HAtoms B A C A B = 0 A B = A C
45 6 44 sseqtrrd A C B HAtoms C HAtoms B A C A B = 0 C A B
46 45 ex A C B HAtoms C HAtoms B A C A B = 0 C A B