Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|
2 |
|
atelch |
|
3 |
|
chjcl |
|
4 |
1 2 3
|
sylancr |
|
5 |
1
|
choccli |
|
6 |
|
chincl |
|
7 |
4 5 6
|
sylancl |
|
8 |
|
hatomic |
|
9 |
7 8
|
sylan |
|
10 |
|
atelch |
|
11 |
|
inss2 |
|
12 |
|
sstr |
|
13 |
11 12
|
mpan2 |
|
14 |
1
|
pjococi |
|
15 |
14
|
oveq1i |
|
16 |
15
|
ineq1i |
|
17 |
|
incom |
|
18 |
16 17
|
eqtr3i |
|
19 |
|
pjoml3 |
|
20 |
5 19
|
mpan |
|
21 |
20
|
imp |
|
22 |
18 21
|
eqtrid |
|
23 |
10 13 22
|
syl2an |
|
24 |
23
|
ad2ant2lr |
|
25 |
|
inss1 |
|
26 |
|
sstr |
|
27 |
25 26
|
mpan2 |
|
28 |
|
chub1 |
|
29 |
1 28
|
mpan |
|
30 |
29
|
adantr |
|
31 |
1 3
|
mpan |
|
32 |
|
chlub |
|
33 |
1 32
|
mp3an1 |
|
34 |
31 33
|
sylan2 |
|
35 |
34
|
biimpd |
|
36 |
35
|
ancoms |
|
37 |
30 36
|
mpand |
|
38 |
2 10 37
|
syl2an |
|
39 |
38
|
imp |
|
40 |
27 39
|
sylan2 |
|
41 |
40
|
adantrr |
|
42 |
|
chjcl |
|
43 |
1 10 42
|
sylancr |
|
44 |
2 43
|
anim12i |
|
45 |
44
|
adantr |
|
46 |
|
chub1 |
|
47 |
1 10 46
|
sylancr |
|
48 |
47
|
ad2antlr |
|
49 |
|
pm3.22 |
|
50 |
49
|
adantr |
|
51 |
27
|
adantl |
|
52 |
|
incom |
|
53 |
|
chsh |
|
54 |
1
|
chshii |
|
55 |
|
orthin |
|
56 |
53 54 55
|
sylancl |
|
57 |
56
|
imp |
|
58 |
52 57
|
eqtrid |
|
59 |
10 13 58
|
syl2an |
|
60 |
51 59
|
jca |
|
61 |
60
|
ad2ant2lr |
|
62 |
|
atexch |
|
63 |
1 62
|
mp3an1 |
|
64 |
50 61 63
|
sylc |
|
65 |
|
chlub |
|
66 |
1 65
|
mp3an1 |
|
67 |
66
|
biimpd |
|
68 |
67
|
expd |
|
69 |
45 48 64 68
|
syl3c |
|
70 |
41 69
|
eqssd |
|
71 |
70
|
ineq1d |
|
72 |
24 71
|
eqtr3d |
|
73 |
72
|
eleq1d |
|
74 |
73
|
exp43 |
|
75 |
74
|
com24 |
|
76 |
75
|
imp31 |
|
77 |
76
|
ibd |
|
78 |
77
|
ex |
|
79 |
78
|
com23 |
|
80 |
79
|
rexlimdv |
|
81 |
9 80
|
mpd |
|
82 |
81
|
ex |
|
83 |
82
|
necon1bd |
|
84 |
83
|
orrd |
|
85 |
|
elun |
|
86 |
|
fvex |
|
87 |
86
|
inex2 |
|
88 |
87
|
elsn |
|
89 |
88
|
orbi2i |
|
90 |
85 89
|
bitri |
|
91 |
84 90
|
sylibr |
|