Metamath Proof Explorer


Theorem atoml2i

Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of BeltramettiCassinelli1 p. 400. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 AC
Assertion atoml2i BHAtoms¬BAABAHAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 AC
2 atelch BHAtomsBC
3 pjoml5 ACBCAAAB=AB
4 1 2 3 sylancr BHAtomsAAAB=AB
5 incom ABA=AAB
6 5 eqeq1i ABA=0AAB=0
7 6 biimpi ABA=0AAB=0
8 7 oveq2d ABA=0AAAB=A0
9 1 chj0i A0=A
10 8 9 eqtrdi ABA=0AAAB=A
11 4 10 sylan9req BHAtomsABA=0AB=A
12 11 ex BHAtomsABA=0AB=A
13 chlejb2 BCACBAAB=A
14 2 1 13 sylancl BHAtomsBAAB=A
15 12 14 sylibrd BHAtomsABA=0BA
16 15 con3d BHAtoms¬BA¬ABA=0
17 1 atomli BHAtomsABAHAtoms0
18 elun ABAHAtoms0ABAHAtomsABA0
19 h0elch 0C
20 19 elexi 0V
21 20 elsn2 ABA0ABA=0
22 21 orbi2i ABAHAtomsABA0ABAHAtomsABA=0
23 orcom ABAHAtomsABA=0ABA=0ABAHAtoms
24 18 22 23 3bitri ABAHAtoms0ABA=0ABAHAtoms
25 17 24 sylib BHAtomsABA=0ABAHAtoms
26 25 ord BHAtoms¬ABA=0ABAHAtoms
27 16 26 syld BHAtoms¬BAABAHAtoms
28 27 imp BHAtoms¬BAABAHAtoms