Metamath Proof Explorer


Theorem chj0i

Description: Join with lattice zero in CH . (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis ch0le.1 AC
Assertion chj0i A0=A

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 h0elch 0C
3 1 2 chjvali A0=A0
4 1 ch0lei 0A
5 ssequn2 0AA0=A
6 4 5 mpbi A0=A
7 6 fveq2i A0=A
8 7 fveq2i A0=A
9 1 pjococi A=A
10 3 8 9 3eqtri A0=A