Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|- A e. CH |
2 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
3 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
4 |
1 2 3
|
sylancr |
|- ( B e. HAtoms -> ( A vH B ) e. CH ) |
5 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
6 |
|
chincl |
|- ( ( ( A vH B ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH ) |
7 |
4 5 6
|
sylancl |
|- ( B e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH ) |
8 |
|
hatomic |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> E. x e. HAtoms x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) |
9 |
7 8
|
sylan |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> E. x e. HAtoms x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) |
10 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
11 |
|
inss2 |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) C_ ( _|_ ` A ) |
12 |
|
sstr |
|- ( ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) C_ ( _|_ ` A ) ) -> x C_ ( _|_ ` A ) ) |
13 |
11 12
|
mpan2 |
|- ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> x C_ ( _|_ ` A ) ) |
14 |
1
|
pjococi |
|- ( _|_ ` ( _|_ ` A ) ) = A |
15 |
14
|
oveq1i |
|- ( ( _|_ ` ( _|_ ` A ) ) vH x ) = ( A vH x ) |
16 |
15
|
ineq1i |
|- ( ( ( _|_ ` ( _|_ ` A ) ) vH x ) i^i ( _|_ ` A ) ) = ( ( A vH x ) i^i ( _|_ ` A ) ) |
17 |
|
incom |
|- ( ( ( _|_ ` ( _|_ ` A ) ) vH x ) i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` ( _|_ ` A ) ) vH x ) ) |
18 |
16 17
|
eqtr3i |
|- ( ( A vH x ) i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` ( _|_ ` A ) ) vH x ) ) |
19 |
|
pjoml3 |
|- ( ( ( _|_ ` A ) e. CH /\ x e. CH ) -> ( x C_ ( _|_ ` A ) -> ( ( _|_ ` A ) i^i ( ( _|_ ` ( _|_ ` A ) ) vH x ) ) = x ) ) |
20 |
5 19
|
mpan |
|- ( x e. CH -> ( x C_ ( _|_ ` A ) -> ( ( _|_ ` A ) i^i ( ( _|_ ` ( _|_ ` A ) ) vH x ) ) = x ) ) |
21 |
20
|
imp |
|- ( ( x e. CH /\ x C_ ( _|_ ` A ) ) -> ( ( _|_ ` A ) i^i ( ( _|_ ` ( _|_ ` A ) ) vH x ) ) = x ) |
22 |
18 21
|
eqtrid |
|- ( ( x e. CH /\ x C_ ( _|_ ` A ) ) -> ( ( A vH x ) i^i ( _|_ ` A ) ) = x ) |
23 |
10 13 22
|
syl2an |
|- ( ( x e. HAtoms /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( ( A vH x ) i^i ( _|_ ` A ) ) = x ) |
24 |
23
|
ad2ant2lr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( ( A vH x ) i^i ( _|_ ` A ) ) = x ) |
25 |
|
inss1 |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) C_ ( A vH B ) |
26 |
|
sstr |
|- ( ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) C_ ( A vH B ) ) -> x C_ ( A vH B ) ) |
27 |
25 26
|
mpan2 |
|- ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> x C_ ( A vH B ) ) |
28 |
|
chub1 |
|- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) ) |
29 |
1 28
|
mpan |
|- ( B e. CH -> A C_ ( A vH B ) ) |
30 |
29
|
adantr |
|- ( ( B e. CH /\ x e. CH ) -> A C_ ( A vH B ) ) |
31 |
1 3
|
mpan |
|- ( B e. CH -> ( A vH B ) e. CH ) |
32 |
|
chlub |
|- ( ( A e. CH /\ x e. CH /\ ( A vH B ) e. CH ) -> ( ( A C_ ( A vH B ) /\ x C_ ( A vH B ) ) <-> ( A vH x ) C_ ( A vH B ) ) ) |
33 |
1 32
|
mp3an1 |
|- ( ( x e. CH /\ ( A vH B ) e. CH ) -> ( ( A C_ ( A vH B ) /\ x C_ ( A vH B ) ) <-> ( A vH x ) C_ ( A vH B ) ) ) |
34 |
31 33
|
sylan2 |
|- ( ( x e. CH /\ B e. CH ) -> ( ( A C_ ( A vH B ) /\ x C_ ( A vH B ) ) <-> ( A vH x ) C_ ( A vH B ) ) ) |
35 |
34
|
biimpd |
|- ( ( x e. CH /\ B e. CH ) -> ( ( A C_ ( A vH B ) /\ x C_ ( A vH B ) ) -> ( A vH x ) C_ ( A vH B ) ) ) |
36 |
35
|
ancoms |
|- ( ( B e. CH /\ x e. CH ) -> ( ( A C_ ( A vH B ) /\ x C_ ( A vH B ) ) -> ( A vH x ) C_ ( A vH B ) ) ) |
37 |
30 36
|
mpand |
|- ( ( B e. CH /\ x e. CH ) -> ( x C_ ( A vH B ) -> ( A vH x ) C_ ( A vH B ) ) ) |
38 |
2 10 37
|
syl2an |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( x C_ ( A vH B ) -> ( A vH x ) C_ ( A vH B ) ) ) |
39 |
38
|
imp |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ x C_ ( A vH B ) ) -> ( A vH x ) C_ ( A vH B ) ) |
40 |
27 39
|
sylan2 |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( A vH x ) C_ ( A vH B ) ) |
41 |
40
|
adantrr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( A vH x ) C_ ( A vH B ) ) |
42 |
|
chjcl |
|- ( ( A e. CH /\ x e. CH ) -> ( A vH x ) e. CH ) |
43 |
1 10 42
|
sylancr |
|- ( x e. HAtoms -> ( A vH x ) e. CH ) |
44 |
2 43
|
anim12i |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( B e. CH /\ ( A vH x ) e. CH ) ) |
45 |
44
|
adantr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( B e. CH /\ ( A vH x ) e. CH ) ) |
46 |
|
chub1 |
|- ( ( A e. CH /\ x e. CH ) -> A C_ ( A vH x ) ) |
47 |
1 10 46
|
sylancr |
|- ( x e. HAtoms -> A C_ ( A vH x ) ) |
48 |
47
|
ad2antlr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> A C_ ( A vH x ) ) |
49 |
|
pm3.22 |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( x e. HAtoms /\ B e. HAtoms ) ) |
50 |
49
|
adantr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( x e. HAtoms /\ B e. HAtoms ) ) |
51 |
27
|
adantl |
|- ( ( x e. HAtoms /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> x C_ ( A vH B ) ) |
52 |
|
incom |
|- ( A i^i x ) = ( x i^i A ) |
53 |
|
chsh |
|- ( x e. CH -> x e. SH ) |
54 |
1
|
chshii |
|- A e. SH |
55 |
|
orthin |
|- ( ( x e. SH /\ A e. SH ) -> ( x C_ ( _|_ ` A ) -> ( x i^i A ) = 0H ) ) |
56 |
53 54 55
|
sylancl |
|- ( x e. CH -> ( x C_ ( _|_ ` A ) -> ( x i^i A ) = 0H ) ) |
57 |
56
|
imp |
|- ( ( x e. CH /\ x C_ ( _|_ ` A ) ) -> ( x i^i A ) = 0H ) |
58 |
52 57
|
eqtrid |
|- ( ( x e. CH /\ x C_ ( _|_ ` A ) ) -> ( A i^i x ) = 0H ) |
59 |
10 13 58
|
syl2an |
|- ( ( x e. HAtoms /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( A i^i x ) = 0H ) |
60 |
51 59
|
jca |
|- ( ( x e. HAtoms /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( x C_ ( A vH B ) /\ ( A i^i x ) = 0H ) ) |
61 |
60
|
ad2ant2lr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( x C_ ( A vH B ) /\ ( A i^i x ) = 0H ) ) |
62 |
|
atexch |
|- ( ( A e. CH /\ x e. HAtoms /\ B e. HAtoms ) -> ( ( x C_ ( A vH B ) /\ ( A i^i x ) = 0H ) -> B C_ ( A vH x ) ) ) |
63 |
1 62
|
mp3an1 |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( ( x C_ ( A vH B ) /\ ( A i^i x ) = 0H ) -> B C_ ( A vH x ) ) ) |
64 |
50 61 63
|
sylc |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> B C_ ( A vH x ) ) |
65 |
|
chlub |
|- ( ( A e. CH /\ B e. CH /\ ( A vH x ) e. CH ) -> ( ( A C_ ( A vH x ) /\ B C_ ( A vH x ) ) <-> ( A vH B ) C_ ( A vH x ) ) ) |
66 |
1 65
|
mp3an1 |
|- ( ( B e. CH /\ ( A vH x ) e. CH ) -> ( ( A C_ ( A vH x ) /\ B C_ ( A vH x ) ) <-> ( A vH B ) C_ ( A vH x ) ) ) |
67 |
66
|
biimpd |
|- ( ( B e. CH /\ ( A vH x ) e. CH ) -> ( ( A C_ ( A vH x ) /\ B C_ ( A vH x ) ) -> ( A vH B ) C_ ( A vH x ) ) ) |
68 |
67
|
expd |
|- ( ( B e. CH /\ ( A vH x ) e. CH ) -> ( A C_ ( A vH x ) -> ( B C_ ( A vH x ) -> ( A vH B ) C_ ( A vH x ) ) ) ) |
69 |
45 48 64 68
|
syl3c |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( A vH B ) C_ ( A vH x ) ) |
70 |
41 69
|
eqssd |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( A vH x ) = ( A vH B ) ) |
71 |
70
|
ineq1d |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( ( A vH x ) i^i ( _|_ ` A ) ) = ( ( A vH B ) i^i ( _|_ ` A ) ) ) |
72 |
24 71
|
eqtr3d |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> x = ( ( A vH B ) i^i ( _|_ ` A ) ) ) |
73 |
72
|
eleq1d |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) ) -> ( x e. HAtoms <-> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
74 |
73
|
exp43 |
|- ( B e. HAtoms -> ( x e. HAtoms -> ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H -> ( x e. HAtoms <-> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) ) ) ) |
75 |
74
|
com24 |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H -> ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> ( x e. HAtoms -> ( x e. HAtoms <-> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) ) ) ) |
76 |
75
|
imp31 |
|- ( ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( x e. HAtoms -> ( x e. HAtoms <-> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) ) |
77 |
76
|
ibd |
|- ( ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) /\ x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) ) -> ( x e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
78 |
77
|
ex |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> ( x e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) ) |
79 |
78
|
com23 |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> ( x e. HAtoms -> ( x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) ) |
80 |
79
|
rexlimdv |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> ( E. x e. HAtoms x C_ ( ( A vH B ) i^i ( _|_ ` A ) ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
81 |
9 80
|
mpd |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) |
82 |
81
|
ex |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) =/= 0H -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
83 |
82
|
necon1bd |
|- ( B e. HAtoms -> ( -. ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
84 |
83
|
orrd |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
85 |
|
elun |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) ) |
86 |
|
fvex |
|- ( _|_ ` A ) e. _V |
87 |
86
|
inex2 |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) e. _V |
88 |
87
|
elsn |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } <-> ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) |
89 |
88
|
orbi2i |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
90 |
85 89
|
bitri |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
91 |
84 90
|
sylibr |
|- ( B e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) ) |