Step |
Hyp |
Ref |
Expression |
1 |
|
ssrin |
|- ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( ( _|_ ` B ) i^i B ) ) |
2 |
|
incom |
|- ( ( _|_ ` B ) i^i B ) = ( B i^i ( _|_ ` B ) ) |
3 |
1 2
|
sseqtrdi |
|- ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) ) |
4 |
|
ocin |
|- ( B e. SH -> ( B i^i ( _|_ ` B ) ) = 0H ) |
5 |
4
|
sseq2d |
|- ( B e. SH -> ( ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) <-> ( A i^i B ) C_ 0H ) ) |
6 |
3 5
|
syl5ib |
|- ( B e. SH -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) |
7 |
6
|
adantl |
|- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) |
8 |
|
shincl |
|- ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) |
9 |
|
sh0le |
|- ( ( A i^i B ) e. SH -> 0H C_ ( A i^i B ) ) |
10 |
8 9
|
syl |
|- ( ( A e. SH /\ B e. SH ) -> 0H C_ ( A i^i B ) ) |
11 |
7 10
|
jctird |
|- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) ) |
12 |
|
eqss |
|- ( ( A i^i B ) = 0H <-> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) |
13 |
11 12
|
syl6ibr |
|- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) = 0H ) ) |