| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrin |  |-  ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( ( _|_ ` B ) i^i B ) ) | 
						
							| 2 |  | incom |  |-  ( ( _|_ ` B ) i^i B ) = ( B i^i ( _|_ ` B ) ) | 
						
							| 3 | 1 2 | sseqtrdi |  |-  ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) ) | 
						
							| 4 |  | ocin |  |-  ( B e. SH -> ( B i^i ( _|_ ` B ) ) = 0H ) | 
						
							| 5 | 4 | sseq2d |  |-  ( B e. SH -> ( ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) <-> ( A i^i B ) C_ 0H ) ) | 
						
							| 6 | 3 5 | imbitrid |  |-  ( B e. SH -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) | 
						
							| 8 |  | shincl |  |-  ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) | 
						
							| 9 |  | sh0le |  |-  ( ( A i^i B ) e. SH -> 0H C_ ( A i^i B ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. SH /\ B e. SH ) -> 0H C_ ( A i^i B ) ) | 
						
							| 11 | 7 10 | jctird |  |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) ) | 
						
							| 12 |  | eqss |  |-  ( ( A i^i B ) = 0H <-> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) | 
						
							| 13 | 11 12 | imbitrrdi |  |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) = 0H ) ) |