Metamath Proof Explorer


Theorem orthin

Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion orthin ( ( 𝐴S𝐵S ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) ⊆ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) )
2 incom ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) )
3 1 2 sseqtrdi ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) )
4 ocin ( 𝐵S → ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) = 0 )
5 4 sseq2d ( 𝐵S → ( ( 𝐴𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝐴𝐵 ) ⊆ 0 ) )
6 3 5 syl5ib ( 𝐵S → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) ⊆ 0 ) )
7 6 adantl ( ( 𝐴S𝐵S ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) ⊆ 0 ) )
8 shincl ( ( 𝐴S𝐵S ) → ( 𝐴𝐵 ) ∈ S )
9 sh0le ( ( 𝐴𝐵 ) ∈ S → 0 ⊆ ( 𝐴𝐵 ) )
10 8 9 syl ( ( 𝐴S𝐵S ) → 0 ⊆ ( 𝐴𝐵 ) )
11 7 10 jctird ( ( 𝐴S𝐵S ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴𝐵 ) ⊆ 0 ∧ 0 ⊆ ( 𝐴𝐵 ) ) ) )
12 eqss ( ( 𝐴𝐵 ) = 0 ↔ ( ( 𝐴𝐵 ) ⊆ 0 ∧ 0 ⊆ ( 𝐴𝐵 ) ) )
13 11 12 syl6ibr ( ( 𝐴S𝐵S ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴𝐵 ) = 0 ) )