Step |
Hyp |
Ref |
Expression |
1 |
|
ssrin |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) ) |
2 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) |
3 |
1 2
|
sseqtrdi |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
4 |
|
ocin |
⊢ ( 𝐵 ∈ Sℋ → ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ ) |
5 |
4
|
sseq2d |
⊢ ( 𝐵 ∈ Sℋ → ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
6 |
3 5
|
syl5ib |
⊢ ( 𝐵 ∈ Sℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
8 |
|
shincl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ) |
9 |
|
sh0le |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) |
11 |
7 10
|
jctird |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) ) |
12 |
|
eqss |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
13 |
11 12
|
syl6ibr |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |