| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrin |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) ) |
| 2 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) |
| 3 |
1 2
|
sseqtrdi |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 4 |
|
ocin |
⊢ ( 𝐵 ∈ Sℋ → ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ ) |
| 5 |
4
|
sseq2d |
⊢ ( 𝐵 ∈ Sℋ → ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 6 |
3 5
|
imbitrid |
⊢ ( 𝐵 ∈ Sℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 8 |
|
shincl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ) |
| 9 |
|
sh0le |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 |
7 10
|
jctird |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 12 |
|
eqss |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 13 |
11 12
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |