Metamath Proof Explorer


Theorem orthin

Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion orthin ASBSABAB=0

Proof

Step Hyp Ref Expression
1 ssrin ABABBB
2 incom BB=BB
3 1 2 sseqtrdi ABABBB
4 ocin BSBB=0
5 4 sseq2d BSABBBAB0
6 3 5 imbitrid BSABAB0
7 6 adantl ASBSABAB0
8 shincl ASBSABS
9 sh0le ABS0AB
10 8 9 syl ASBS0AB
11 7 10 jctird ASBSABAB00AB
12 eqss AB=0AB00AB
13 11 12 imbitrrdi ASBSABAB=0