Metamath Proof Explorer


Theorem ssrin

Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssrin ABACBC

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 anim1d ABxAxCxBxC
3 elin xACxAxC
4 elin xBCxBxC
5 2 3 4 3imtr4g ABxACxBC
6 5 ssrdv ABACBC