Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrin | |- ( A C_ B -> ( A i^i C ) C_ ( B i^i C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
2 | 1 | anim1d | |- ( A C_ B -> ( ( x e. A /\ x e. C ) -> ( x e. B /\ x e. C ) ) ) |
3 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
4 | elin | |- ( x e. ( B i^i C ) <-> ( x e. B /\ x e. C ) ) |
|
5 | 2 3 4 | 3imtr4g | |- ( A C_ B -> ( x e. ( A i^i C ) -> x e. ( B i^i C ) ) ) |
6 | 5 | ssrdv | |- ( A C_ B -> ( A i^i C ) C_ ( B i^i C ) ) |