Metamath Proof Explorer


Theorem ocin

Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion ocin ASAA=0

Proof

Step Hyp Ref Expression
1 shocel ASxAxyAxihy=0
2 oveq2 y=xxihy=xihx
3 2 eqeq1d y=xxihy=0xihx=0
4 3 rspccv yAxihy=0xAxihx=0
5 his6 xxihx=0x=0
6 5 biimpd xxihx=0x=0
7 4 6 sylan9r xyAxihy=0xAx=0
8 1 7 syl6bi ASxAxAx=0
9 8 com23 ASxAxAx=0
10 9 impd ASxAxAx=0
11 sh0 AS0A
12 oc0 AS0A
13 11 12 jca AS0A0A
14 eleq1 x=0xA0A
15 eleq1 x=0xA0A
16 14 15 anbi12d x=0xAxA0A0A
17 13 16 syl5ibrcom ASx=0xAxA
18 10 17 impbid ASxAxAx=0
19 elin xAAxAxA
20 elch0 x0x=0
21 18 19 20 3bitr4g ASxAAx0
22 21 eqrdv ASAA=0