Metamath Proof Explorer


Theorem occon3

Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014) (New usage is discouraged.)

Ref Expression
Assertion occon3 ABABBA

Proof

Step Hyp Ref Expression
1 ococss BBB
2 1 adantl ABBB
3 ocss BB
4 occon ABABBA
5 3 4 sylan2 ABABBA
6 sstr2 BBBABA
7 2 5 6 sylsyld ABABBA
8 ococss AAA
9 8 adantr ABAA
10 id BB
11 ocss AA
12 occon BABAAB
13 10 11 12 syl2anr ABBAAB
14 sstr2 AAABAB
15 9 13 14 sylsyld ABBAAB
16 7 15 impbid ABABBA