Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | occon3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ococss | |
|
2 | 1 | adantl | |
3 | ocss | |
|
4 | occon | |
|
5 | 3 4 | sylan2 | |
6 | sstr2 | |
|
7 | 2 5 6 | sylsyld | |
8 | ococss | |
|
9 | 8 | adantr | |
10 | id | |
|
11 | ocss | |
|
12 | occon | |
|
13 | 10 11 12 | syl2anr | |
14 | sstr2 | |
|
15 | 9 13 14 | sylsyld | |
16 | 7 15 | impbid | |