| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ococss |
⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 3 |
|
ocss |
⊢ ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) ⊆ ℋ ) |
| 4 |
|
occon |
⊢ ( ( 𝐴 ⊆ ℋ ∧ ( ⊥ ‘ 𝐵 ) ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 6 |
|
sstr2 |
⊢ ( 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 7 |
2 5 6
|
sylsyld |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 8 |
|
ococss |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 10 |
|
id |
⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ ) |
| 11 |
|
ocss |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 12 |
|
occon |
⊢ ( ( 𝐵 ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 13 |
10 11 12
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 14 |
|
sstr2 |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 |
9 13 14
|
sylsyld |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 16 |
7 15
|
impbid |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |