Metamath Proof Explorer


Theorem ococss

Description: Inclusion in complement of complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ococss ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴 ⊆ ℋ → ( 𝑦𝐴𝑦 ∈ ℋ ) )
2 ocorth ( 𝐴 ⊆ ℋ → ( ( 𝑦𝐴𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑦 ·ih 𝑥 ) = 0 ) )
3 2 expd ( 𝐴 ⊆ ℋ → ( 𝑦𝐴 → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑦 ·ih 𝑥 ) = 0 ) ) )
4 3 ralrimdv ( 𝐴 ⊆ ℋ → ( 𝑦𝐴 → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) )
5 1 4 jcad ( 𝐴 ⊆ ℋ → ( 𝑦𝐴 → ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) )
6 ocss ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ )
7 ocel ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) )
8 6 7 syl ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) )
9 5 8 sylibrd ( 𝐴 ⊆ ℋ → ( 𝑦𝐴𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
10 9 ssrdv ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )