| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel |  |-  ( A C_ ~H -> ( y e. A -> y e. ~H ) ) | 
						
							| 2 |  | ocorth |  |-  ( A C_ ~H -> ( ( y e. A /\ x e. ( _|_ ` A ) ) -> ( y .ih x ) = 0 ) ) | 
						
							| 3 | 2 | expd |  |-  ( A C_ ~H -> ( y e. A -> ( x e. ( _|_ ` A ) -> ( y .ih x ) = 0 ) ) ) | 
						
							| 4 | 3 | ralrimdv |  |-  ( A C_ ~H -> ( y e. A -> A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) | 
						
							| 5 | 1 4 | jcad |  |-  ( A C_ ~H -> ( y e. A -> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) | 
						
							| 6 |  | ocss |  |-  ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) | 
						
							| 7 |  | ocel |  |-  ( ( _|_ ` A ) C_ ~H -> ( y e. ( _|_ ` ( _|_ ` A ) ) <-> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A C_ ~H -> ( y e. ( _|_ ` ( _|_ ` A ) ) <-> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) | 
						
							| 9 | 5 8 | sylibrd |  |-  ( A C_ ~H -> ( y e. A -> y e. ( _|_ ` ( _|_ ` A ) ) ) ) | 
						
							| 10 | 9 | ssrdv |  |-  ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |