| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ococss |
|- ( B C_ ~H -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
| 2 |
1
|
adantl |
|- ( ( A C_ ~H /\ B C_ ~H ) -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
| 3 |
|
ocss |
|- ( B C_ ~H -> ( _|_ ` B ) C_ ~H ) |
| 4 |
|
occon |
|- ( ( A C_ ~H /\ ( _|_ ` B ) C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) ) |
| 5 |
3 4
|
sylan2 |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) ) |
| 6 |
|
sstr2 |
|- ( B C_ ( _|_ ` ( _|_ ` B ) ) -> ( ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) -> B C_ ( _|_ ` A ) ) ) |
| 7 |
2 5 6
|
sylsyld |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> B C_ ( _|_ ` A ) ) ) |
| 8 |
|
ococss |
|- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 9 |
8
|
adantr |
|- ( ( A C_ ~H /\ B C_ ~H ) -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 10 |
|
id |
|- ( B C_ ~H -> B C_ ~H ) |
| 11 |
|
ocss |
|- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
| 12 |
|
occon |
|- ( ( B C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) ) |
| 13 |
10 11 12
|
syl2anr |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) ) |
| 14 |
|
sstr2 |
|- ( A C_ ( _|_ ` ( _|_ ` A ) ) -> ( ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) -> A C_ ( _|_ ` B ) ) ) |
| 15 |
9 13 14
|
sylsyld |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> A C_ ( _|_ ` B ) ) ) |
| 16 |
7 15
|
impbid |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |