Metamath Proof Explorer


Theorem ocnel

Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion ocnel
|- ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( A e. ( H i^i ( _|_ ` H ) ) <-> ( A e. H /\ A e. ( _|_ ` H ) ) )
2 ocin
 |-  ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H )
3 2 eleq2d
 |-  ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) <-> A e. 0H ) )
4 3 biimpd
 |-  ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) -> A e. 0H ) )
5 1 4 syl5bir
 |-  ( H e. SH -> ( ( A e. H /\ A e. ( _|_ ` H ) ) -> A e. 0H ) )
6 5 expcomd
 |-  ( H e. SH -> ( A e. ( _|_ ` H ) -> ( A e. H -> A e. 0H ) ) )
7 6 imp
 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A e. 0H ) )
8 elch0
 |-  ( A e. 0H <-> A = 0h )
9 7 8 syl6ib
 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A = 0h ) )
10 9 necon3ad
 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A =/= 0h -> -. A e. H ) )
11 10 3impia
 |-  ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H )