| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( A e. ( H i^i ( _|_ ` H ) ) <-> ( A e. H /\ A e. ( _|_ ` H ) ) ) |
| 2 |
|
ocin |
|- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
| 3 |
2
|
eleq2d |
|- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) <-> A e. 0H ) ) |
| 4 |
3
|
biimpd |
|- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) -> A e. 0H ) ) |
| 5 |
1 4
|
biimtrrid |
|- ( H e. SH -> ( ( A e. H /\ A e. ( _|_ ` H ) ) -> A e. 0H ) ) |
| 6 |
5
|
expcomd |
|- ( H e. SH -> ( A e. ( _|_ ` H ) -> ( A e. H -> A e. 0H ) ) ) |
| 7 |
6
|
imp |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A e. 0H ) ) |
| 8 |
|
elch0 |
|- ( A e. 0H <-> A = 0h ) |
| 9 |
7 8
|
imbitrdi |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A = 0h ) ) |
| 10 |
9
|
necon3ad |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A =/= 0h -> -. A e. H ) ) |
| 11 |
10
|
3impia |
|- ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H ) |