Metamath Proof Explorer


Theorem pjoml3

Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion pjoml3 ACBCBAAAB=B

Proof

Step Hyp Ref Expression
1 sseq2 A=ifACABABifACA
2 id A=ifACAA=ifACA
3 fveq2 A=ifACAA=ifACA
4 3 oveq1d A=ifACAAB=ifACAB
5 2 4 ineq12d A=ifACAAAB=ifACAifACAB
6 5 eqeq1d A=ifACAAAB=BifACAifACAB=B
7 1 6 imbi12d A=ifACABAAAB=BBifACAifACAifACAB=B
8 sseq1 B=ifBCBBifACAifBCBifACA
9 oveq2 B=ifBCBifACAB=ifACAifBCB
10 9 ineq2d B=ifBCBifACAifACAB=ifACAifACAifBCB
11 id B=ifBCBB=ifBCB
12 10 11 eqeq12d B=ifBCBifACAifACAB=BifACAifACAifBCB=ifBCB
13 8 12 imbi12d B=ifBCBBifACAifACAifACAB=BifBCBifACAifACAifACAifBCB=ifBCB
14 ifchhv ifACAC
15 ifchhv ifBCBC
16 14 15 pjoml3i ifBCBifACAifACAifACAifBCB=ifBCB
17 7 13 16 dedth2h ACBCBAAAB=B