Metamath Proof Explorer


Theorem cvp

Description: The Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvp
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A 

Proof

Step Hyp Ref Expression
1 atelch
 |-  ( B e. HAtoms -> B e. CH )
2 chincl
 |-  ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH )
3 1 2 sylan2
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A i^i B ) e. CH )
4 atcveq0
 |-  ( ( ( A i^i B ) e. CH /\ B e. HAtoms ) -> ( ( A i^i B )  ( A i^i B ) = 0H ) )
5 3 4 sylancom
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B )  ( A i^i B ) = 0H ) )
6 cvexch
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B )  A 
7 1 6 sylan2
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B )  A 
8 5 7 bitr3d
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A