| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
| 2 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
| 3 |
1 2
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A i^i B ) e. CH ) |
| 4 |
|
atcveq0 |
|- ( ( ( A i^i B ) e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) ( A i^i B ) = 0H ) ) |
| 5 |
3 4
|
sylancom |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) ( A i^i B ) = 0H ) ) |
| 6 |
|
cvexch |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A |
| 7 |
1 6
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) A |
| 8 |
5 7
|
bitr3d |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |