Step |
Hyp |
Ref |
Expression |
1 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
2 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A i^i B ) e. CH ) |
4 |
|
atcveq0 |
|- ( ( ( A i^i B ) e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) ( A i^i B ) = 0H ) ) |
5 |
3 4
|
sylancom |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) ( A i^i B ) = 0H ) ) |
6 |
|
cvexch |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A |
7 |
1 6
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) A |
8 |
5 7
|
bitr3d |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |