Metamath Proof Explorer


Theorem atnssm0

Description: The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atnssm0
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) )

Proof

Step Hyp Ref Expression
1 chcv1
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> A 
2 cvp
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A 
3 1 2 bitr4d
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) )