Metamath Proof Explorer


Theorem atnssm0

Description: The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atnssm0 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 chcv1 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴𝐴 ( 𝐴 𝐵 ) ) )
2 cvp ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) = 0𝐴 ( 𝐴 𝐵 ) ) )
3 1 2 bitr4d ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 0 ) )