Description: The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | atnssm0 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chcv1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
2 | cvp | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
3 | 1 2 | bitr4d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |