| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atelch |
⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) |
| 2 |
|
chincl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) |
| 4 |
|
atcveq0 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 5 |
3 4
|
sylancom |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 6 |
|
cvexch |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 7 |
1 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 8 |
5 7
|
bitr3d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |