Metamath Proof Explorer


Theorem cvp

Description: The Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvp ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) = 0𝐴 ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 atelch ( 𝐵 ∈ HAtoms → 𝐵C )
2 chincl ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ) ∈ C )
3 1 2 sylan2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐴𝐵 ) ∈ C )
4 atcveq0 ( ( ( 𝐴𝐵 ) ∈ C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) ⋖ 𝐵 ↔ ( 𝐴𝐵 ) = 0 ) )
5 3 4 sylancom ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) ⋖ 𝐵 ↔ ( 𝐴𝐵 ) = 0 ) )
6 cvexch ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) )
7 1 6 sylan2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) )
8 5 7 bitr3d ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) = 0𝐴 ( 𝐴 𝐵 ) ) )