Metamath Proof Explorer


Theorem cvexch

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvexch ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ineq1 ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( 𝐴𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) )
2 1 breq1d ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( ( 𝐴𝐵 ) ⋖ 𝐵 ↔ ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ⋖ 𝐵 ) )
3 id ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) )
4 oveq1 ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( 𝐴 𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) )
5 3 4 breq12d ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( 𝐴 ( 𝐴 𝐵 ) ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) ) )
6 2 5 bibi12d ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) ↔ ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ⋖ 𝐵 ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) ) ) )
7 ineq2 ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) )
8 id ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) )
9 7 8 breq12d ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ⋖ 𝐵 ↔ ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) ⋖ if ( 𝐵C , 𝐵 , ℋ ) ) )
10 oveq2 ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∨ if ( 𝐵C , 𝐵 , ℋ ) ) )
11 10 breq2d ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ if ( 𝐵C , 𝐵 , ℋ ) ) ) )
12 9 11 bibi12d ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ⋖ 𝐵 ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ 𝐵 ) ) ↔ ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) ⋖ if ( 𝐵C , 𝐵 , ℋ ) ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ if ( 𝐵C , 𝐵 , ℋ ) ) ) ) )
13 ifchhv if ( 𝐴C , 𝐴 , ℋ ) ∈ C
14 ifchhv if ( 𝐵C , 𝐵 , ℋ ) ∈ C
15 13 14 cvexchi ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) ⋖ if ( 𝐵C , 𝐵 , ℋ ) ↔ if ( 𝐴C , 𝐴 , ℋ ) ⋖ ( if ( 𝐴C , 𝐴 , ℋ ) ∨ if ( 𝐵C , 𝐵 , ℋ ) ) )
16 6 12 15 dedth2h ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) )