Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993) (Proof shortened by SN, 20-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ineq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶 } = { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶 } ) | |
| 2 | dfin5 | ⊢ ( 𝐴 ∩ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐶 } | |
| 3 | dfin5 | ⊢ ( 𝐵 ∩ 𝐶 ) = { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐶 } | |
| 4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) |