Metamath Proof Explorer
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003) Avoid ax-10 , ax-11 , ax-12 . (Revised by Gino
Giotto, 20-Aug-2023)
|
|
Ref |
Expression |
|
Assertion |
rabeq |
⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
3 |
2
|
rabbidva2 |
⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |