Metamath Proof Explorer


Theorem rabeqdv

Description: Equality of restricted class abstractions. Deduction form of rabeq . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis rabeqdv.1 ( 𝜑𝐴 = 𝐵 )
Assertion rabeqdv ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜓 } )

Proof

Step Hyp Ref Expression
1 rabeqdv.1 ( 𝜑𝐴 = 𝐵 )
2 rabeq ( 𝐴 = 𝐵 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜓 } )
3 1 2 syl ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜓 } )