Metamath Proof Explorer


Theorem rabeqdv

Description: Equality of restricted class abstractions. Deduction form of rabeq . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis rabeqdv.1
|- ( ph -> A = B )
Assertion rabeqdv
|- ( ph -> { x e. A | ps } = { x e. B | ps } )

Proof

Step Hyp Ref Expression
1 rabeqdv.1
 |-  ( ph -> A = B )
2 rabeq
 |-  ( A = B -> { x e. A | ps } = { x e. B | ps } )
3 1 2 syl
 |-  ( ph -> { x e. A | ps } = { x e. B | ps } )