Metamath Proof Explorer


Theorem rabeq

Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003) Avoid ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Assertion rabeq
|- ( A = B -> { x e. A | ph } = { x e. B | ph } )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
2 1 anbi1d
 |-  ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) )
3 2 rabbidva2
 |-  ( A = B -> { x e. A | ph } = { x e. B | ph } )