Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
rabeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | rabeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
4 | 2 | rabbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
5 | 3 4 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |