Metamath Proof Explorer


Theorem rabeqbidv

Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses rabeqbidv.1 ( 𝜑𝐴 = 𝐵 )
rabeqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rabeqbidv ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabeqbidv.1 ( 𝜑𝐴 = 𝐵 )
2 rabeqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 rabeqdv ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜓 } )
4 2 rabbidv ( 𝜑 → { 𝑥𝐵𝜓 } = { 𝑥𝐵𝜒 } )
5 3 4 eqtrd ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )