Metamath Proof Explorer


Theorem rabeqbidv

Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses rabeqbidv.1 φA=B
rabeqbidv.2 φψχ
Assertion rabeqbidv φxA|ψ=xB|χ

Proof

Step Hyp Ref Expression
1 rabeqbidv.1 φA=B
2 rabeqbidv.2 φψχ
3 2 adantr φxAψχ
4 1 3 rabeqbidva φxA|ψ=xB|χ