Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017) Remove DV conditions. (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| rabeqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rabeqbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | rabeqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| 4 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 | 4 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 6 | 5 | rabbidva2 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| 7 | 3 6 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |