Metamath Proof Explorer


Theorem rabeqbidvaOLD

Description: Obsolete version of rabeqbidva as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rabeqbidvaOLD.1 ( 𝜑𝐴 = 𝐵 )
rabeqbidvaOLD.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rabeqbidvaOLD ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabeqbidvaOLD.1 ( 𝜑𝐴 = 𝐵 )
2 rabeqbidvaOLD.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rabbidva ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )
4 1 rabeqdv ( 𝜑 → { 𝑥𝐴𝜒 } = { 𝑥𝐵𝜒 } )
5 3 4 eqtrd ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )