Description: Obsolete version of rabeqbidva as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeqbidvaOLD.1 | |- ( ph -> A = B ) |
|
rabeqbidvaOLD.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
Assertion | rabeqbidvaOLD | |- ( ph -> { x e. A | ps } = { x e. B | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidvaOLD.1 | |- ( ph -> A = B ) |
|
2 | rabeqbidvaOLD.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
3 | 2 | rabbidva | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |
4 | 1 | rabeqdv | |- ( ph -> { x e. A | ch } = { x e. B | ch } ) |
5 | 3 4 | eqtrd | |- ( ph -> { x e. A | ps } = { x e. B | ch } ) |