Metamath Proof Explorer


Theorem rabeqbidvaOLD

Description: Obsolete version of rabeqbidva as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rabeqbidvaOLD.1
|- ( ph -> A = B )
rabeqbidvaOLD.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabeqbidvaOLD
|- ( ph -> { x e. A | ps } = { x e. B | ch } )

Proof

Step Hyp Ref Expression
1 rabeqbidvaOLD.1
 |-  ( ph -> A = B )
2 rabeqbidvaOLD.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 rabbidva
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )
4 1 rabeqdv
 |-  ( ph -> { x e. A | ch } = { x e. B | ch } )
5 3 4 eqtrd
 |-  ( ph -> { x e. A | ps } = { x e. B | ch } )