Step |
Hyp |
Ref |
Expression |
1 |
|
atom1d |
|- ( B e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) |
2 |
|
spansncv2 |
|- ( ( A e. CH /\ x e. ~H ) -> ( -. ( span ` { x } ) C_ A -> A |
3 |
|
sseq1 |
|- ( B = ( span ` { x } ) -> ( B C_ A <-> ( span ` { x } ) C_ A ) ) |
4 |
3
|
notbid |
|- ( B = ( span ` { x } ) -> ( -. B C_ A <-> -. ( span ` { x } ) C_ A ) ) |
5 |
|
oveq2 |
|- ( B = ( span ` { x } ) -> ( A vH B ) = ( A vH ( span ` { x } ) ) ) |
6 |
5
|
breq2d |
|- ( B = ( span ` { x } ) -> ( A A |
7 |
4 6
|
imbi12d |
|- ( B = ( span ` { x } ) -> ( ( -. B C_ A -> A ( -. ( span ` { x } ) C_ A -> A |
8 |
2 7
|
syl5ibrcom |
|- ( ( A e. CH /\ x e. ~H ) -> ( B = ( span ` { x } ) -> ( -. B C_ A -> A |
9 |
8
|
adantld |
|- ( ( A e. CH /\ x e. ~H ) -> ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A |
10 |
9
|
rexlimdva |
|- ( A e. CH -> ( E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A |
11 |
10
|
imp |
|- ( ( A e. CH /\ E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) -> ( -. B C_ A -> A |
12 |
1 11
|
sylan2b |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A -> A |
13 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
14 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
15 |
|
cvpss |
|- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A A C. ( A vH B ) ) ) |
16 |
14 15
|
syldan |
|- ( ( A e. CH /\ B e. CH ) -> ( A A C. ( A vH B ) ) ) |
17 |
|
chnle |
|- ( ( A e. CH /\ B e. CH ) -> ( -. B C_ A <-> A C. ( A vH B ) ) ) |
18 |
16 17
|
sylibrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A -. B C_ A ) ) |
19 |
13 18
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A -. B C_ A ) ) |
20 |
12 19
|
impbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> A |