Metamath Proof Explorer


Theorem chcv1

Description: The Hilbert lattice has the covering property. Proposition 1(ii) of Kalmbach p. 140 (and its converse). (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chcv1
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> A 

Proof

Step Hyp Ref Expression
1 atom1d
 |-  ( B e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) )
2 spansncv2
 |-  ( ( A e. CH /\ x e. ~H ) -> ( -. ( span ` { x } ) C_ A -> A 
3 sseq1
 |-  ( B = ( span ` { x } ) -> ( B C_ A <-> ( span ` { x } ) C_ A ) )
4 3 notbid
 |-  ( B = ( span ` { x } ) -> ( -. B C_ A <-> -. ( span ` { x } ) C_ A ) )
5 oveq2
 |-  ( B = ( span ` { x } ) -> ( A vH B ) = ( A vH ( span ` { x } ) ) )
6 5 breq2d
 |-  ( B = ( span ` { x } ) -> ( A  A 
7 4 6 imbi12d
 |-  ( B = ( span ` { x } ) -> ( ( -. B C_ A -> A  ( -. ( span ` { x } ) C_ A -> A 
8 2 7 syl5ibrcom
 |-  ( ( A e. CH /\ x e. ~H ) -> ( B = ( span ` { x } ) -> ( -. B C_ A -> A 
9 8 adantld
 |-  ( ( A e. CH /\ x e. ~H ) -> ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A 
10 9 rexlimdva
 |-  ( A e. CH -> ( E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A 
11 10 imp
 |-  ( ( A e. CH /\ E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) -> ( -. B C_ A -> A 
12 1 11 sylan2b
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A -> A 
13 atelch
 |-  ( B e. HAtoms -> B e. CH )
14 chjcl
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )
15 cvpss
 |-  ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A  A C. ( A vH B ) ) )
16 14 15 syldan
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  A C. ( A vH B ) ) )
17 chnle
 |-  ( ( A e. CH /\ B e. CH ) -> ( -. B C_ A <-> A C. ( A vH B ) ) )
18 16 17 sylibrd
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  -. B C_ A ) )
19 13 18 sylan2
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  -. B C_ A ) )
20 12 19 impbid
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> A