Step |
Hyp |
Ref |
Expression |
1 |
|
elat2 |
|- ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) ) |
2 |
|
chne0 |
|- ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) ) |
3 |
|
nfv |
|- F/ x A e. CH |
4 |
|
nfv |
|- F/ x A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) |
5 |
|
nfre1 |
|- F/ x E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) |
6 |
4 5
|
nfim |
|- F/ x ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
7 |
|
chel |
|- ( ( A e. CH /\ x e. A ) -> x e. ~H ) |
8 |
7
|
adantrr |
|- ( ( A e. CH /\ ( x e. A /\ x =/= 0h ) ) -> x e. ~H ) |
9 |
8
|
adantrr |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> x e. ~H ) |
10 |
|
simprlr |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> x =/= 0h ) |
11 |
|
h1dn0 |
|- ( ( x e. ~H /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) |
12 |
7 11
|
sylan |
|- ( ( ( A e. CH /\ x e. A ) /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) |
13 |
12
|
anasss |
|- ( ( A e. CH /\ ( x e. A /\ x =/= 0h ) ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) |
14 |
13
|
adantrr |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) |
15 |
|
ch1dle |
|- ( ( A e. CH /\ x e. A ) -> ( _|_ ` ( _|_ ` { x } ) ) C_ A ) |
16 |
|
snssi |
|- ( x e. ~H -> { x } C_ ~H ) |
17 |
|
occl |
|- ( { x } C_ ~H -> ( _|_ ` { x } ) e. CH ) |
18 |
7 16 17
|
3syl |
|- ( ( A e. CH /\ x e. A ) -> ( _|_ ` { x } ) e. CH ) |
19 |
|
choccl |
|- ( ( _|_ ` { x } ) e. CH -> ( _|_ ` ( _|_ ` { x } ) ) e. CH ) |
20 |
|
sseq1 |
|- ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y C_ A <-> ( _|_ ` ( _|_ ` { x } ) ) C_ A ) ) |
21 |
|
eqeq1 |
|- ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y = A <-> ( _|_ ` ( _|_ ` { x } ) ) = A ) ) |
22 |
|
eqeq1 |
|- ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y = 0H <-> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) |
23 |
21 22
|
orbi12d |
|- ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( y = A \/ y = 0H ) <-> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) |
24 |
20 23
|
imbi12d |
|- ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( y C_ A -> ( y = A \/ y = 0H ) ) <-> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) |
25 |
24
|
rspcv |
|- ( ( _|_ ` ( _|_ ` { x } ) ) e. CH -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) |
26 |
18 19 25
|
3syl |
|- ( ( A e. CH /\ x e. A ) -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) |
27 |
15 26
|
mpid |
|- ( ( A e. CH /\ x e. A ) -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) |
28 |
27
|
impr |
|- ( ( A e. CH /\ ( x e. A /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) |
29 |
28
|
adantrlr |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) |
30 |
29
|
ord |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( -. ( _|_ ` ( _|_ ` { x } ) ) = A -> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) |
31 |
|
nne |
|- ( -. ( _|_ ` ( _|_ ` { x } ) ) =/= 0H <-> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) |
32 |
30 31
|
syl6ibr |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( -. ( _|_ ` ( _|_ ` { x } ) ) = A -> -. ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) ) |
33 |
14 32
|
mt4d |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( _|_ ` ( _|_ ` { x } ) ) = A ) |
34 |
33
|
eqcomd |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> A = ( _|_ ` ( _|_ ` { x } ) ) ) |
35 |
|
rspe |
|- ( ( x e. ~H /\ ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
36 |
9 10 34 35
|
syl12anc |
|- ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
37 |
36
|
exp44 |
|- ( A e. CH -> ( x e. A -> ( x =/= 0h -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) ) |
38 |
3 6 37
|
rexlimd |
|- ( A e. CH -> ( E. x e. A x =/= 0h -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) |
39 |
2 38
|
sylbid |
|- ( A e. CH -> ( A =/= 0H -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) |
40 |
39
|
imp32 |
|- ( ( A e. CH /\ ( A =/= 0H /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
41 |
1 40
|
sylbi |
|- ( A e. HAtoms -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
42 |
|
h1da |
|- ( ( x e. ~H /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) e. HAtoms ) |
43 |
|
eleq1 |
|- ( A = ( _|_ ` ( _|_ ` { x } ) ) -> ( A e. HAtoms <-> ( _|_ ` ( _|_ ` { x } ) ) e. HAtoms ) ) |
44 |
42 43
|
syl5ibr |
|- ( A = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( x e. ~H /\ x =/= 0h ) -> A e. HAtoms ) ) |
45 |
44
|
expdcom |
|- ( x e. ~H -> ( x =/= 0h -> ( A = ( _|_ ` ( _|_ ` { x } ) ) -> A e. HAtoms ) ) ) |
46 |
45
|
impd |
|- ( x e. ~H -> ( ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) -> A e. HAtoms ) ) |
47 |
46
|
rexlimiv |
|- ( E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) -> A e. HAtoms ) |
48 |
41 47
|
impbii |
|- ( A e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
49 |
|
spansn |
|- ( x e. ~H -> ( span ` { x } ) = ( _|_ ` ( _|_ ` { x } ) ) ) |
50 |
49
|
eqeq2d |
|- ( x e. ~H -> ( A = ( span ` { x } ) <-> A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
51 |
50
|
anbi2d |
|- ( x e. ~H -> ( ( x =/= 0h /\ A = ( span ` { x } ) ) <-> ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) |
52 |
51
|
rexbiia |
|- ( E. x e. ~H ( x =/= 0h /\ A = ( span ` { x } ) ) <-> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) |
53 |
48 52
|
bitr4i |
|- ( A e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ A = ( span ` { x } ) ) ) |