Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of BeltramettiCassinelli p. 107. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | atom1d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elat2 | |
|
2 | chne0 | |
|
3 | nfv | |
|
4 | nfv | |
|
5 | nfre1 | |
|
6 | 4 5 | nfim | |
7 | chel | |
|
8 | 7 | adantrr | |
9 | 8 | adantrr | |
10 | simprlr | |
|
11 | h1dn0 | |
|
12 | 7 11 | sylan | |
13 | 12 | anasss | |
14 | 13 | adantrr | |
15 | ch1dle | |
|
16 | snssi | |
|
17 | occl | |
|
18 | 7 16 17 | 3syl | |
19 | choccl | |
|
20 | sseq1 | |
|
21 | eqeq1 | |
|
22 | eqeq1 | |
|
23 | 21 22 | orbi12d | |
24 | 20 23 | imbi12d | |
25 | 24 | rspcv | |
26 | 18 19 25 | 3syl | |
27 | 15 26 | mpid | |
28 | 27 | impr | |
29 | 28 | adantrlr | |
30 | 29 | ord | |
31 | nne | |
|
32 | 30 31 | imbitrrdi | |
33 | 14 32 | mt4d | |
34 | 33 | eqcomd | |
35 | rspe | |
|
36 | 9 10 34 35 | syl12anc | |
37 | 36 | exp44 | |
38 | 3 6 37 | rexlimd | |
39 | 2 38 | sylbid | |
40 | 39 | imp32 | |
41 | 1 40 | sylbi | |
42 | h1da | |
|
43 | eleq1 | |
|
44 | 42 43 | imbitrrid | |
45 | 44 | expdcom | |
46 | 45 | impd | |
47 | 46 | rexlimiv | |
48 | 41 47 | impbii | |
49 | spansn | |
|
50 | 49 | eqeq2d | |
51 | 50 | anbi2d | |
52 | 51 | rexbiia | |
53 | 48 52 | bitr4i | |