Metamath Proof Explorer


Theorem atom1d

Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of BeltramettiCassinelli p. 107. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atom1d AHAtomsxx0A=spanx

Proof

Step Hyp Ref Expression
1 elat2 AHAtomsACA0yCyAy=Ay=0
2 chne0 ACA0xAx0
3 nfv xAC
4 nfv xyCyAy=Ay=0
5 nfre1 xxx0A=x
6 4 5 nfim xyCyAy=Ay=0xx0A=x
7 chel ACxAx
8 7 adantrr ACxAx0x
9 8 adantrr ACxAx0yCyAy=Ay=0x
10 simprlr ACxAx0yCyAy=Ay=0x0
11 h1dn0 xx0x0
12 7 11 sylan ACxAx0x0
13 12 anasss ACxAx0x0
14 13 adantrr ACxAx0yCyAy=Ay=0x0
15 ch1dle ACxAxA
16 snssi xx
17 occl xxC
18 7 16 17 3syl ACxAxC
19 choccl xCxC
20 sseq1 y=xyAxA
21 eqeq1 y=xy=Ax=A
22 eqeq1 y=xy=0x=0
23 21 22 orbi12d y=xy=Ay=0x=Ax=0
24 20 23 imbi12d y=xyAy=Ay=0xAx=Ax=0
25 24 rspcv xCyCyAy=Ay=0xAx=Ax=0
26 18 19 25 3syl ACxAyCyAy=Ay=0xAx=Ax=0
27 15 26 mpid ACxAyCyAy=Ay=0x=Ax=0
28 27 impr ACxAyCyAy=Ay=0x=Ax=0
29 28 adantrlr ACxAx0yCyAy=Ay=0x=Ax=0
30 29 ord ACxAx0yCyAy=Ay=0¬x=Ax=0
31 nne ¬x0x=0
32 30 31 imbitrrdi ACxAx0yCyAy=Ay=0¬x=A¬x0
33 14 32 mt4d ACxAx0yCyAy=Ay=0x=A
34 33 eqcomd ACxAx0yCyAy=Ay=0A=x
35 rspe xx0A=xxx0A=x
36 9 10 34 35 syl12anc ACxAx0yCyAy=Ay=0xx0A=x
37 36 exp44 ACxAx0yCyAy=Ay=0xx0A=x
38 3 6 37 rexlimd ACxAx0yCyAy=Ay=0xx0A=x
39 2 38 sylbid ACA0yCyAy=Ay=0xx0A=x
40 39 imp32 ACA0yCyAy=Ay=0xx0A=x
41 1 40 sylbi AHAtomsxx0A=x
42 h1da xx0xHAtoms
43 eleq1 A=xAHAtomsxHAtoms
44 42 43 imbitrrid A=xxx0AHAtoms
45 44 expdcom xx0A=xAHAtoms
46 45 impd xx0A=xAHAtoms
47 46 rexlimiv xx0A=xAHAtoms
48 41 47 impbii AHAtomsxx0A=x
49 spansn xspanx=x
50 49 eqeq2d xA=spanxA=x
51 50 anbi2d xx0A=spanxx0A=x
52 51 rexbiia xx0A=spanxxx0A=x
53 48 52 bitr4i AHAtomsxx0A=spanx