Metamath Proof Explorer


Theorem nfre1

Description: The setvar x is not free in E. x e. A ph . (Contributed by NM, 19-Mar-1997) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Assertion nfre1 xxAφ

Proof

Step Hyp Ref Expression
1 df-rex xAφxxAφ
2 nfe1 xxxAφ
3 1 2 nfxfr xxAφ