Metamath Proof Explorer


Theorem nfre1

Description: The setvar x is not free in E. x e. A ph . (Contributed by NM, 19-Mar-1997) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Assertion nfre1 x x A φ

Proof

Step Hyp Ref Expression
1 df-rex x A φ x x A φ
2 nfe1 x x x A φ
3 1 2 nfxfr x x A φ