Metamath Proof Explorer


Theorem nfre1

Description: The setvar x is not free in E. x e. A ph . (Contributed by NM, 19-Mar-1997) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Assertion nfre1 𝑥𝑥𝐴 𝜑

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
2 nfe1 𝑥𝑥 ( 𝑥𝐴𝜑 )
3 1 2 nfxfr 𝑥𝑥𝐴 𝜑