Metamath Proof Explorer


Theorem h1dn0

Description: A nonzero vector generates a (nonzero) 1-dimensional subspace. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1dn0 AA0A0

Proof

Step Hyp Ref Expression
1 h1did AAA
2 eleq2 A=0AAA0
3 1 2 syl5ibcom AA=0A0
4 elch0 A0A=0
5 3 4 imbitrdi AA=0A=0
6 5 necon3d AA0A0
7 6 imp AA0A0